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Abstract

The fundamental principles of quantum mechanics (QM) and the structure of spacetime
in the theory of relativity (TR) are traditionally formulated against the backdrop of real
or complex numbers, regarded as a passive, universal, and infinitely precise mathematical
continuum. This paper proposes and investigates the hypothesis that such a view might
be incomplete, particularly at the ultimate, Planck scales. We suggest that the number
system itself, characterized by the choice of base B, ceases to be a mere convention
and acquires properties of an active observer or measurement context. This aspect
is formalized through the introduction of a hypothetical Number System Operator
(NSO), ÔNS(B). The central hypothesis posits that the complete determination of all
digits in the numerical representation N =

∑
diB

i of some fundamental quantity in a
fixed base B might be fundamentally impossible at the micro-level. Any interaction or
“measurement” associated with the context B might only reliably determine a finite
number (k + 1) of least significant digits (d0, . . . , dk), leaving the most significant digits
in a state of inherent “mathematical uncertainty”. This uncertainty, we argue, could
be the primary source of quantum uncertainty and might influence the geometry of
spacetime, offering a unified mechanism to explain contextuality in both QM and TR.
The hypothesis is supported by the analysis of quantum-like structures in number
systems (exemplified by Pythagorean triples [1]), where the possibility of preserving a
“digital tail” is observed, and contrasted with the behavior of more complex structures
(e.g., cubic equations), where the NSO projection might be unique for each basis,
highlighting the universality yet non-triviality of base dependence. The hypothesis
is extended to the relativistic interval, where coordinates and time are interpreted
as abstract “numerical states”. The non-commutativity [ÔNS(B1), ÔNS(B2)] ̸= 0 is
discussed. The NSO model is positioned as a conceptual bridge between QM and TR.
Connections to p-adic analysis, NCG, topos theory, information theory are considered,
and possible physical manifestations and research directions are discussed.
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1 Introduction

1.1 The Standard Paradigm and Its Limitations
The fundamental description of nature in modern physics is divided between two extremely

successful but conceptually distinct theories: quantum mechanics (QM), which governs the
behavior of matter and energy at the microscopic level, and general relativity (GR), which
describes gravity as the geometry of curved spacetime, governing the dynamics of planets,
stars, and the universe at large. Despite the phenomenal success of each theory within its
domain of applicability, their unification into a single theory of quantum gravity remains one
of the most pressing and challenging problems in theoretical physics [10].

Both theories, despite their differences, implicitly rely on a common mathematical founda-
tion—the use of the fields of real (R) or complex (C) numbers to represent physical quantities:
coordinates, time, momenta, energies, fields, state parameters [3]. The numerical continuum
is treated as a universal, passive, and absolute background against which physical processes
unfold. The method of representing numbers, for instance, in a positional number system
with base B (N = ∑

diB
i), is regarded as merely a technical convention that does not affect

the physical essence. The choice of base (decimal, binary, natural) is dictated by convenience
or tradition. Physical laws are formulated to be invariant or covariant under transformations
(coordinate, gauge) that act over this number field, without touching its internal structure.

Even the revolutionary concepts of the 20th century did not challenge this view of
numbers. In QM, uncertainty arises from the non-commutativity of operators for observables
([Â, B̂] ̸= 0) acting in a Hilbert space over C, not from the properties of the numbers
themselves that are the results of measurements (eigenvalues) [6]. In GR, the curvature of
spacetime is described using methods of differential geometry over R, where coordinates are
just convenient labels for points on a smooth manifold.
1.2 The NSO Hypothesis: The Number System as an Active

Observer
However, one might question the universality and passivity of numerical representation at

the most fundamental scales, near the Planck length LP ≈ 1.6 × 10−35 m and Planck time
TP ≈ 10−43 s, where quantum gravity effects are expected to manifest, and the concept of
smooth spacetime might break down. At these scales, the very procedure of measurement
and assigning a numerical value to a physical quantity could face principal limitations related
not only to physical interactions (as in the standard Heisenberg uncertainty relations) but
also to the immanent properties of the numerical representation system itself.

In this paper, we propose and investigate the hypothesis that the standard view of the role
of numbers in physics is incomplete. We suggest that at the fundamental level, the number
system (base B) ceases to be a passive convention and acquires properties of
an active observer or measurement context. We formalize this aspect through the
introduction of a hypothetical Number System Operator (NSO), ÔNS(B).

The main postulates of the NSO hypothesis are:
1. Abstract Numerical State (|Ψnum⟩): The fundamental description of a physical

quantity before its “measurement” or representation in a specific number system is given
not by a number from R or C, but by an abstract element |Ψnum⟩ of some mathematical
space N . This state potentially contains information about all possible numerical
manifestations of the quantity.

2. Number System Operator (ÔNS(B)): For each measurement context, characterized

3



(at least partially) by a base B, there exists an operator ÔNS(B) : N → S ′
B, mapping

the abstract state |Ψnum⟩ to the space of observable numerical representations S ′
B (a

subspace of the space of digit sequences in base B, SB).

3. Limited Digit Observability: The action of ÔNS(B) on |Ψnum⟩ does not reveal the
complete digital record of the number. It allows for the reliable determination of only a
finite number (k + 1) of least significant digits {d0, d1, . . . , dk}B. The parameter
k (determining the “depth” or “resolution” of the numerical observation) might depend
on the base B, the state |Ψnum⟩, and the physical context (e.g., interaction energy,
available information).

4. Immanent Mathematical Uncertainty: The most significant digits (dk+1, dk+2, . . .)
remain fundamentally uncertain or exist in a state analogous to quantum superposi-
tion relative to the given observation basis B. This uncertainty is not a consequence of
measurement inaccuracy but an intrinsic property of the numerical observation process
postulated by the NSO model.

5. Non-commutativity of Bases: NSO operators for different bases may not commute:
[ÔNS(B1), ÔNS(B2)] ̸= 0. This means the result of an observation in base B2 depends
on whether a prior observation was made in base B1, and vice versa. This leads to an
uncertainty relation for numerical representations in different bases.

6. Source of Physical Uncertainty: This immanent “mathematical uncertainty” could
be the fundamental source of observed quantum uncertainty and contextuality, and
might also influence the perceived structure of spacetime at small scales.

It is crucial to emphasize: we do not necessarily assume “different” mathematics for the
micro- and macro-worlds. Rather, we consider that a unified mathematical apparatus
(e.g., the arithmetic of integers or real numbers) possesses hidden properties (limited
digital observability, base dependence) that become physically relevant and dominant only
at fundamental scales, while their influence can be neglected in the macro-world. This is
analogous to how relativistic effects, described by a unified theory, become noticeable only at
high velocities.

1.3 An Intuitive Metaphor: The Tower and the Spotlight

To make the idea more intuitive, let us imagine the numerical state |Ψnum⟩ as a very
tall, potentially infinite tower, whose floors correspond to the digital places. An observation
ÔNS(B) is like illuminating this tower with a spotlight from the ground. We can clearly see
only a few lower floors (d0, . . . , dk). The higher the floor, the more it is lost in the darkness
(uncertainty). Furthermore, if we change the “color” of the spotlight (switch to a different
base B′), we might see a different number of floors or even notice details on the lower floors
that were invisible with the first light, while losing sight of something else. The very act of
“illuminating” in base B1 might affect what we see later in base B2.
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1.4 Goals and Structure of the Article

The goal of this work is to develop the NSO concept in detail, explore its formal properties
(including non-commutativity and base dependence), apply it to the description of spacetime
and the relativistic interval, discuss its potential as a unifying link between QM and TR,
analyze connections with existing theories, and outline possible consequences and avenues for
verification. An important aspect is the inclusion of concrete numerical examples illustrating
the key postulates of the hypothesis and the discussion of the differing behavior of NSO
projections for different mathematical structures (e.g., Pythagorean triples versus higher-
degree equations).

The article is structured as follows: Section 2 recalls the motivation from the study of
Pythagorean triples, introduces the formalization of recurrence, and discusses the contrast
with higher-degree equations. Section 3 delves into the NSO formalism, including numerical
examples of uncertainty and non-commutativity. Section 4 is devoted to applying NSO
to spacetime, with a calculation example for the relativistic interval. Section 5 analyzes
connections with p-adics, NCG, topos theory, and information theory. Section 6 considers
consequences and predictions, including a discussion of physical realizability and statistical
aspects. Section 7 develops the hypothesis of NSO as a bridge between QM and TR. Section
8 summarizes the findings.

2 Quantum Analogies in Arithmetic and Formalization
of Recurrence

The study [2] provided empirical grounding for the NSO hypothesis by demonstrating
unexpected quantum-like patterns in the distribution of primitive Pythagorean triples (PPTs),
sets of integers (a, b, c) such that a2 + b2 = c2 and gcd(a, b, c) = 1. Key observations relevant
to NSO:

• Discreteness and Quantization: The observed values of the least significant digits,
c (mod B), took only discrete values (e.g., 1, 5, 9 for B=10; 1, 5, 9, D for B=16). This
is analogous to the quantization of an observable.

• Base Dependence/Contextuality: The structure of the distribution based on c
(mod B) changed radically when switching base B = 10 to B = 16. This illustrates the
idea of ÔNS(B) as a context-dependent observation operator.

• Recurrence and “Tail” Preservation for PPTs: A key idea [2], inspired by
discussions on the dxdy.ru forum, was the possibility of generating new, larger triples
(a′, b′, c′) from (a, b, c) while preserving the least significant digits:

DB,k(a′) = DB,k(a), DB,k(b′) = DB,k(b), DB,k(c′) = DB,k(c), (1)

where DB,k(x) = x (mod Bk+1) is the operator extracting the last k + 1 digits. The
existence of transformation formulas ensuring this [1] can be interpreted within the
NSO framework as the possibility of finding a state transformation |Ψnum⟩ → |ψ′⟩ such
that its projection ÔNS(B, k) remains (partially) invariant. This resembles the stability
of certain quantum properties under evolution.
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– Example (B=10): For (3, 4, 5) → D10,0 = (3, 4, 5). We seek (a′, b′, c′) with
a′ ≡ 3, b′ ≡ 4, c′ ≡ 5 (mod 10).

– Example (B=16): For (5, 12, 13) → D16,0 = (5, C,D). We seek (a′′, b′′, c′′) with
a′′ ≡ 5, b′′ ≡ 12, c′′ ≡ 13 (mod 16).

• Contrast with Higher-Degree Equations (Cubic Equations): As noted by S.
Klykov (private communication, reflected in [1]), for Diophantine equations of higher
degree, such as cubic analogues a3 + b3 + c3 = d3, a similar simple recurrence and
preservation of the least significant digital “tails” when transitioning to new solutions
or changing the base is apparently not observed as clearly. Whereas for PPTs, the
NSO projection ÔNS(B, k) can exhibit stability under certain transformations, for cubic
equations, each NSO projection for a new solution or in a new base B′ might be unique
and unpredictable based on the previous one.

For a3 + b3 + c3 = d3 and a′3 + b′3 + c′3 = d′3, DB,k(a′) ̸= DB,k(a) (in general) (2)

This observation is critically important: it underscores that the behavior of the
numerical state under the action of ÔNS(B, k) is not universally trivial but depends on
the internal structure of the mathematical object itself (quadratic form for PPTs
vs. cubic form). This strengthens the argument that NSO reveals non-trivial, structure-
dependent properties of numerical states, and that base dependence is a fundamental,
not superficial, effect. The possibility of tail preservation for PPTs might be an analogue
of a “classical limit” or integrability, whereas the uniqueness of projections for cubic
equations might be analogous to “quantum chaos” or non-integrability at the numerical
level.

3 The Number System Operator (NSO) Model: For-
malism and Examples

3.1 The Space of Numerical States N

We postulate a space N whose elements |Ψnum⟩ represent fundamental numerical states. N
must support arithmetic-like operations (⊕,⊖,⊗, (·)⊗2) and encode information for projections
ÔNS(B, k). Possible structures: adeles [7], NCG algebras [4], sheaves [6].

3.2 The Operator ÔNS(B, k) and Limited Observability

The operator ÔNS(B, k) : N → S ′
Bk performs a “measurement” with depth k. Its action

yields:

ÔNS(B, k)|Ψnum⟩ −→ OutcomeB,k = ({d0, d1, . . . , dk}B, |Uncertain⟩B,k) (3)

k defines the resolution, |Uncertain⟩B,k describes the uncertainty of higher digits (possibly
involving C, carrying phase info). k might depend on energy and information limits [8].

Example of Observable Uncertainty (π): (from [1], section 2) Let |Ψnum⟩ correspond
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to π = 3.14159....

ÔNS(10, k = 3)|Ψπ⟩ → ({3, ., 1, 4, 1}10, |U⟩π,10,3) =⇒ Obs. = 3.141

ÔNS(3, k = 3)|Ψπ⟩ → ({1, 0, ., 0, 1, 0}3, |U⟩π,3,3) =⇒ Obs. = 10.0103 ≈ 3.111
The observable values differ, illustrating the base dependence of the NSO projection.

3.3 Non-commutativity and Numerical Uncertainty

Hypothesis:
[ÔNS(B1, k1), ÔNS(B2, k2)]

?
̸= 0 (4)

leads to an uncertainty relation:

∆B1(k1) · ∆B2(k2) ≥ C(B1, B2, |Ψnum⟩) (5)

This is a numerical analogue of the Heisenberg principle, limiting simultaneous precision in
different bases.

Example of Basis Incompatibility (17): (from [1], section 4)

ÔNS(2, k = 2)|Ψ17⟩ → ({0, 0, 1}2, |U⟩17,2,2) =⇒ Obs. = 1

ÔNS(3, k = 1)|Ψ17⟩ → ({2, 2}3, |U⟩17,3,1) =⇒ Obs. = 8
The results are incompatible, illustrating the non-commutativity of numerical observations.

4 NSO Applied to Spacetime: The Relativistic Interval

4.1 Coordinates and Time as Numerical States |Ψnum⟩

Interpret x, y, z, t as labels for |Ψx⟩, . . . , |Ψt⟩. The interval equation (6) becomes relation
(7).

s2 = ∆x2 + ∆y2 + ∆z2 − c2∆t2 (6)
(|Ψs⟩)⊗2 = (|Ψ∆x⟩)⊗2 ⊕ · · · ⊖ ((|Ψc⟩)⊗2 ⊗ (|Ψ∆t⟩)⊗2) (7)

4.2 Observation of Spacetime and a Calculation Example of Inter-
val Distortion

Observation via ÔNS(B, k) yields base-dependent components related approximately:

(sB)2 ≈ (∆xB)2 + (∆yB)2 + (∆zB)2 − c2(∆tB)2 (8)

Calculation Example of Interval Distortion: (from [1], section 3) Let x = 3.1415,
t = 1.772, c = 1. True s2 ≈ 6.729. Observation in B = 3, k = 2: xB ≈ 3.111 (10.013),
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tB ≈ 1.778 (1.213). Observed s2
B ≈ 6.517. The difference s2 − s2

B ≈ 0.212 is a numerical
analogy of relativistic distortion due to NSO.

4.3 Lorentz Invariance and NSO

Reconciling s2 invariance with observable sB dependence requires that invariance holds
at the level of abstract states |Ψnum⟩, while any observation involves a context-dependent
projection via ÔNS(B).

4.4 Non-commutativity of Space and Time

Non-commutativity [ÔNS(Bx), ÔNS(Bt)] ̸= 0 could provide a numerical origin for the
metric signature.

5 Connections to Existing Theories

• p-adic Numbers and Adeles [5, 7]: NSO generalizes the focus on least significant
digits to base B and introduces non-commutativity.

• Noncommutative Geometry [4, 9]: NSO as phenomenology of [x̂µ, x̂ν ] ̸= 0.

• Topos Theory and Quantum Logic [6, 10]: NSO models contextuality (|Ψnum⟩ as
sheaf, ÔNS as stalk).

• Information Theory and Holography [8]: Finite k relates to finite information
density.

6 Implications, Predictions, and Open Questions

6.1 Reinterpreting QM

NSO as numerical source of uncertainty.

6.2 Nature of Fundamental Constants

Possible limited precision and base dependence.

6.3 Quantum Computing and Information

New precision limits, “numerical qudits”.
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6.4 Mathematical Challenges

Develop algebra of ÔNS and space N .

6.5 Physical Realizability and Experimental Signatures

How could NSO effects manifest?

• Fundamental Limits on Precision: Minimum length/time as limit of numerical
resolution k.

• Spectral Effects: Fine structure depending on arithmetic properties of levels.

• Modification of Interference: Anomalies depending on numerical properties of setup
parameters.

• “Numerical Noise” of Spacetime: Fundamental noise from fluctuating k or B.

• Context Dependence in Precision Measurements: Influence of how parameters
are set (e.g., DAC resolution).

• Search for a Privileged Basis: Special simplicity of laws in some basis B0.

• Statistical Analysis and Structural Dependence: Comparing the “digital texture”
for different systems (e.g., PPTs vs. cubic equations, see Section 2) might reveal how
the stability of the tail depends on the algebraic structure, confirming the non-triviality
of NSO projection.

Searching requires extreme precision and specific predictions.

7 Hypothesis: NSO as a Bridge Between QM and Rel-
ativity

The NSO model offers a mechanism to unify the contextuality of QM and TR through
the idea of fundamental contextuality of numerical description. Choosing the number
base B (ÔNS(B)) is analogous to choosing a measurement apparatus (QM) or a reference
frame (TR).

1. Unified source of contextuality: Dependence on B.

2. Quantum properties: From non-commutativity (4) and limited observability (3).

3. Relativistic properties: From dependence of xB, tB on B. s2 invariance for |Ψs⟩ (7), not
necessarily for sB (8).

4. Universality of mathematics: Unified apparatus reveals NSO properties at Planck scale.

NSO offers a path to unification by rethinking the role of mathematics itself.
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8 Conclusion

We have presented and elaborated the Number System Operator (NSO) hypothesis,
proposing an active role for the number base B in observing fundamental states |Ψnum⟩.
The NSO model, with its limited digit observability and potential non-commutativity
[ÔNS(B1), ÔNS(B2)] ̸= 0, offers a unified mechanism potentially underlying both quantum
uncertainty and relativistic contextuality, serving as a conceptual bridge between QM and TR
(Section 7). Numerical examples (Sections 2, 3, 4) illustrate the postulates. A key observation
is the structural dependence of the NSO projection: the potential for numerical tail
preservation in Pythagorean triples contrasts with the likely uniqueness of projections for
higher-degree equations (e.g., cubic), highlighting the non-triviality of the hypothesis (Section
2). Discussion of physical realizability (Section 6.5) outlines avenues for experimental tests.
The NSO model suggests a paradigm shift towards recognizing the active role of mathe-
matics in shaping reality. Further progress requires rigorous mathematical formalization
and search for experimental evidence.
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Аннотация

Фундаментальные принципы квантовой механики (КМ) и структура пространства-времени
в теории относительности (ТО) традиционно формулируются на фоне действительных или
комплексных чисел, рассматриваемых как пассивный, универсальный и бесконечно точный
математический континуум. Данная работа выдвигает и исследует гипотезу о неполноте
такого подхода, особенно на предельных, планковских масштабах. Мы предполагаем, что
сама система счисления, характеризуемая выбором основания B, перестает быть простой
конвенцией и приобретает свойства активного наблюдателя или измерительного контекста.
Этот аспект формализуется через введение гипотетического Оператора Системы Счисле-
ния (ОСС), ÔСС(B). Центральная гипотеза состоит в том, что полная детерминация всех
цифровых разрядов числового представления N =

∑
diB

i некоторой фундаментальной
величины в фиксированном основании B может быть принципиально невозможна на
микроуровне. Любое взаимодействие или “измерение”, ассоциированное с контекстом B,
позволяет достоверно определить лишь конечное число (k + 1) младших значащих разря-
дов (d0, . . . , dk), оставляя старшие разряды в состоянии имманентной “математической
неопределенности”. Эта неопределенность, как мы утверждаем, может быть первоисточни-
ком квантовой неопределенности и влиять на геометрию пространства-времени, предлагая
единый механизм для объяснения контекстуальности как в КМ, так и в ТО. Гипотеза
подкрепляется анализом квантово-подобных структур в числовых системах (на примере
Пифагоровых троек [1]), где наблюдается возможность сохранения “цифрового хво-
ста”, и противопоставляется поведению более сложных структур (например, кубических
уравнений), где ОСС-проекция может быть уникальна для каждого базиса, подчеркивая
универсальность, но нетривиальность базовой зависимости. Гипотеза распространяется
на релятивистский интервал, где координаты и время интерпретируются как абстрактные
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“числовые состояния”. Обсуждается некоммутативность [ÔСС(B1), ÔСС(B2)] ̸= 0. Модель
ОСС позиционируется как концептуальный мост между КМ и ТО. Рассматриваются
связи с p-адическим анализом, НКГ, теорией топосов, теорией информации, обсуждаются
возможные физические проявления и направления дальнейших исследований.

Ключевые слова: Система счисления, основание числа, принцип неопределенности,
квантовая механика, теория относительности, пространство-время, интервал Минковского,
оператор наблюдения, числовое состояние, математическая неопределенность, квантование,
последние цифры, Пифагоровы тройки, кубические уравнения, визуализация данных, p-
адические числа, некоммутативная геометрия, теория информации, объединение физики,
физическая реализуемость, числовые примеры, Деденко, Клыков.
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1 Введение

1.1 Стандартная парадигма и ее ограничения
Фундаментальное описание природы в современной физике разделено между двумя

чрезвычайно успешными, но концептуально различными теориями: квантовой механикой
(КМ), описывающей поведение материи и энергии на микроскопическом уровне, и общей
теорией относительности (ОТО), описывающей гравитацию как геометрию пространства-
времени на макроскопическом и космологическом уровнях. Несмотря на феноменальный
успех каждой из этих теорий в своей области применимости, их объединение в единую теорию
квантовой гравитации остается одной из наиболее актуальных и сложных задач теоретической
физики [10].

Обе теории, при всем их различии, неявно опираются на общий математический фундамент
— использование полей действительных (R) или комплексных (C) чисел для представления
физических величин: координат, времени, импульсов, энергий, полей, параметров состояния
[3]. Числовой континуум рассматривается как универсальный, пассивный и абсолютный
фон, на котором разворачиваются физические процессы. Способ представления чисел,
например, в позиционной системе счисления с основанием B (N = ∑

diB
i), считается не

более чем техническим соглашением, не влияющим на физическую суть. Выбор основания
(десятичного, двоичного, натурального) диктуется удобством или традицией. Физические
законы формулируются так, чтобы быть инвариантными или ковариантными относительно
преобразований (координат, калибровочных), которые действуют над этим числовым полем,
не затрагивая его внутреннюю структуру.

Даже революционные концепции XX века не поколебали этого взгляда на числа. В КМ
неопределенность возникает из некоммутативности операторов наблюдаемых ([Â, B̂] ̸= 0),
действующих в гильбертовом пространстве над C, а не из свойств самих чисел, являющихся
результатами измерений (собственными значениями) [6]. В ОТО кривизна пространства-
времени описывается методами дифференциальной геометрии надR, где координаты являются
лишь удобными метками точек гладкого многообразия.
1.2 Гипотеза ОСС: Числовая система как активный наблюдатель

Однако можно поставить под сомнение универсальность и пассивность числового пред-
ставления на самых фундаментальных масштабах, близких к планковской длине LP ≈ 10−35

м и планковскому времени TP ≈ 10−43 с, где ожидается проявление эффектов квантовой
гравитации и возможный отход от концепции гладкого пространства-времени. На этих мас-
штабах сама процедура измерения и присвоения числового значения физической величине
может столкнуться с принципиальными ограничениями, связанными не только с физическими
взаимодействиями (как в стандартном соотношении неопределенностей Гейзенберга), но и с
имманентными свойствами самой системы числового представления.

В данной работе мы выдвигаем и исследуем гипотезу о том, что стандартный взгляд
на роль чисел в физике является неполным. Мы предполагаем, что на фундаментальном
уровне система счисления (основание B) перестает быть пассивной конвенцией и при-
обретает свойства активного наблюдателя или измерительного контекста. Этот аспект
мы формализуем через введение гипотетического Оператора Системы Счисления (ОСС),
ÔСС(B).

Основные постулаты гипотезы ОСС:
1. Абстрактное числовое состояние (|Ψчисл⟩): Фундаментальное описание физической

величины до ее “измерения” или представления в конкретной системе счисления дается
не числом изR илиC, а абстрактным элементом |Ψчисл⟩ некоторого математического про-

3



странства N . Это состояние потенциально содержит информацию обо всех возможных
числовых проявлениях величины.

2. Оператор Системы Счисления (ÔСС(B)): Для каждого измерительного контекста,
характеризуемого (по крайней мере, частично) основанием B, существует оператор
ÔСС(B) : N → S ′

B, отображающий абстрактное состояние |Ψчисл⟩ в пространство
наблюдаемых числовых представлений S ′

B (подпространство пространства последова-
тельностей цифр в базе B, SB).

3. Ограниченная наблюдаемость цифр: Действие ÔСС(B) на |Ψчисл⟩ не раскрывает
полную цифровую запись числа. Оно позволяет достоверно определить лишь конечное
число (k + 1) младших значащих разрядов {d0, d1, . . . , dk}B. Параметр k (опреде-
ляющий “глубину” или “разрешение” числового наблюдения) может зависеть от базы
B, состояния |Ψчисл⟩ и физического контекста (например, энергии взаимодействия,
доступной информации).

4. Имманентнаяматематическаянеопределенность:Старшиеразряды (dk+1, dk+2, . . .)
остаются принципиально неопределенными или находятся в состоянии, аналогичном
квантовой суперпозиции, относительно данного базиса наблюденияB. Эта неопределен-
ность не является следствием неточности измерения, а внутренним свойством процесса
числового наблюдения, постулируемого моделью ОСС.

5. Некоммутативность базисов: Операторы ОСС для разных оснований могут не комму-
тировать: [ÔСС(B1), ÔСС(B2)] ̸= 0. Это означает, что результат наблюдения в базе B2
зависит от того, проводилось ли предварительное наблюдение в базе B1, и наоборот.
Это приводит к соотношению неопределенности для числовых представлений в разных
базах.

6. Источник физической неопределенности: Эта имманентная “математическая неопре-
деленность” может быть фундаментальным источником наблюдаемой квантовой неопре-
деленности и контекстуальности, а также влиять на воспринимаемуюструктуру пространства-
времени на малых масштабах.

Важно подчеркнуть: мы не предполагаем существования “разной математики” для микро- и
макромира. Скорее, мы считаем, что единый математический аппарат (например, ариф-
метика целых или действительных чисел) обладает скрытыми свойствами (ограниченная
цифровая наблюдаемость, зависимость от базиса), которые становятся физически релевант-
ными и доминирующими только на фундаментальных масштабах, тогда как в макромире их
влиянием можно пренебречь. Это аналогично тому, как релятивистские эффекты, описывае-
мые единой теорией, становятся заметны лишь при больших скоростях.

1.3 Метафора для интуиции: Башня и прожектор

Чтобы сделать идею более наглядной, представим числовое состояние |Ψчисл⟩ как очень
высокую, потенциально бесконечную башню, этажи которой соответствуют цифровым разря-
дам. Наблюдение ÔСС(B) подобно освещению этой башни прожектором с земли. Мы можем
четко разглядеть только несколько нижних этажей (d0, . . . , dk). Чем выше этаж, тем больше
он теряется в темноте (неопределенности). При этом, если мы сменим “цвет” прожектора
(перейдем к другой базе B′), мы можем увидеть другое количество этажей или даже заметить
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детали на нижних этажах, которые были не видны при первом освещении, но при этом
потерять из виду что-то другое. Сам процесс “освещения” в базе B1 может повлиять на то,
что мы увидим позже в базе B2.

1.4 Цели и структура статьи

Цель данной работы — детально развить концепцию ОСС, исследовать ее формальные
свойства (включая некоммутативность и базовую зависимость), применить ее к описанию
пространства-времени и релятивистского интервала, обсудить ее потенциал как связующего
звена между КМ и ТО, проанализировать связи с существующими теориями и наметить
возможные следствия и пути проверки. Важным аспектом является включение конкретных
числовых примеров, иллюстрирующих ключевые постулаты гипотезы, и обсуждение различно-
го поведения ОСС-проекций для разных математических структур (например, Пифагоровых
троек в сравнении с уравнениями высших степеней).

Статья структурирована следующим образом: Раздел 2 напоминает о мотивации из
исследования Пифагоровых троек и вводит формализацию рекуррентности, а также обсуждает
контраст с уравнениями высших степеней. Раздел 3 углубляется в формализм ОСС, включая
числовые примеры неопределенности и некоммутативности. Раздел 4 посвящен применению
ОСС к пространству-времени, с расчетным примером для релятивистского интервала. Раздел 5
анализирует связи с p-адикой, НКГ, топосами и теорией информации. Раздел 6 рассматривает
следствия и предсказания, включая обсуждение физической реализуемости и статистических
аспектов. Раздел 7 развивает гипотезу об ОСС как мосте между КМ и ТО. Раздел 8 подводит
итоги.

2 Квантовые аналогии в арифметике и формализация ре-
куррентности

Исследование [2] послужило отправной точкой для гипотезы ОСС, продемонстрировав
неожиданные квантово-подобные закономерности в распределении примитивных Пифагоро-
вых троек (ППТ) (a, b, c), a2 + b2 = c2. Ключевые наблюдения, релевантные для ОСС:

• Дискретность и Квантование: Наблюдаемые значения младших разрядов,DB,0(c) = c
(mod B), принимали лишь дискретные значения (например, 1, 5, 9 при B = 10). Это
аналог квантования наблюдаемой.

• Зависимость от Базы/Контекста: Структура распределения зависела от B, иллюстри-
руя идею ÔСС(B) как контекстно-зависимого оператора.

• Рекуррентность и Сохранение “хвоста” для ППТ: Ключевая идея [2], вдохновленная
дискуссиями на dxdy.ru, заключалась в возможности генерации новых троек (a′, b′, c′)
из (a, b, c) с сохранением младших цифр:

DB,k(a′) = DB,k(a), DB,k(b′) = DB,k(b), DB,k(c′) = DB,k(c). (1)

Существование формул преобразования, обеспечивающих это [1], можно интерпре-
тировать в рамках ОСС как возможность найти такое преобразование состояния
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|Ψчисл⟩ → |ψ′⟩, что его проекция ÔСС(B, k) остается (частично) инвариантной. Это
похоже на стабильность определенных квантовых свойств.

– Пример (B=10): (3, 4, 5) → D10,0 = (3, 4, 5). Ищем (a′, b′, c′) с a′ ≡ 3, b′ ≡ 4, c′ ≡ 5
(mod 10).

– Пример (B=16): (5, 12, 13) → D16,0 = (5, C,D). Ищем (a′′, b′′, c′′) с a′′ ≡ 5, b′′ ≡
12, c′′ ≡ 13 (mod 16).

• Контраст с уравнениями высших степеней: Как было отмечено С. Клыковым, для
диофантовых уравнений более высокой степени, таких как кубические a3 + b3 + c3 = d3,
аналогичной простой рекуррентности младших цифровых “хвостов”, по-видимому,
не наблюдается [1]. Если для ППТ ОСС-проекция ÔСС(B, k) может демонстрировать
устойчивость, то для кубических уравнений каждая ОСС-проекция для нового решения
или в новой базе B′ может оказаться уникальной.

Для a3 + b3 + c3 = d3 и a′3 + b′3 + c′3 = d′3, DB,k(a′) ̸= DB,k(a) (в общем случае) (2)

Это наблюдение критически важно: оно подчеркивает, что поведение ÔСС(B, k) зави-
сит от структуры математического объекта. Это усиливает аргумент в пользу того,
что ОСС выявляет нетривиальные свойства, а базовая зависимость фундаментальна.
Возможность сохранения хвоста для ППТ — аналог “классической” стабильности,
уникальность проекций для кубов — аналог “квантовой” непредсказуемости/хаоса.

3 Модель Оператора Системы Счисления (ОСС): Форма-
лизм и примеры

3.1 Пространство числовых состояний N

Постулируется пространство N , элементы |Ψчисл⟩ которого представляют фундамен-
тальные числовые состояния. N должно поддерживать арифметико-подобные операции
(⊕,⊖,⊗, (·)⊗2) и кодировать информацию для проекций ÔСС(B, k). Возможные структуры:
адели [7], НКГ-алгебры [4], пучки [6].

3.2 Оператор ÔСС(B, k) и ограниченная наблюдаемость

Оператор ÔСС(B, k) : N → S ′
Bk осуществляет “измерение” с глубиной k. Результат:

ÔСС(B, k)|Ψчисл⟩ −→ OutcomeB,k = ({d0, . . . , dk}B, |Uncertain⟩B,k) (3)

k определяет разрешение, |Uncertain⟩B,k описывает неопределенность старших разрядов (воз-
можно, через C, неся фазовую информацию). k может зависеть от энергии и информационных
пределов [8].

Пример наблюдаемой неопределенности (π): (из [1]) Пусть |Ψчисл⟩ соответствует π =
3.14159....

ÔСС(10, k = 3)|Ψπ⟩ → ({3, ., 1, 4, 1}10, |U⟩π,10,3) =⇒ Набл. = 3.141
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ÔСС(3, k = 3)|Ψπ⟩ → ({1, 0, ., 0, 1, 0}3, |U⟩π,3,3) =⇒ Набл. = 10.0103 ≈ 3.111

Наблюдаемые значения различны, иллюстрируя базовую зависимость ОСС-проекции.

3.3 Некоммутативность и числовая неопределенность

Гипотеза:
[ÔСС(B1, k1), ÔСС(B2, k2)]

?
̸= 0 (4)

ведет к соотношению неопределенности:

∆B1(k1) · ∆B2(k2) ≥ C(B1, B2, |Ψчисл⟩) (5)

Это числовой аналог принципа Гейзенберга.

Пример несовместимости баз (17): (из [1])

ÔСС(2, k = 2)|Ψ17⟩ → ({0, 0, 1}2, |U⟩17,2,2) =⇒ Набл. = 1

ÔСС(3, k = 1)|Ψ17⟩ → ({2, 2}3, |U⟩17,3,1) =⇒ Набл. = 8

Результаты несовместимы, иллюстрируя некоммутативность числовых наблюдений.

4 Применение ОСС к пространству-времени: Релятивист-
ский интервал

4.1 Координаты и время как числовые состояния |Ψчисл⟩

Интерпретируем x, y, z, t как |Ψx⟩, . . . , |Ψt⟩. Уравнение интервала (6) становится соотно-
шением (7).

s2 = ∆x2 + ∆y2 + ∆z2 − c2∆t2 (6)
(|Ψs⟩)⊗2 = (|Ψ∆x⟩)⊗2 ⊕ · · · ⊖ ((|Ψc⟩)⊗2 ⊗ (|Ψ∆t⟩)⊗2) (7)

4.2 Наблюдение пространства-времени и расчетный пример искажения
интервала

Наблюдение через ÔСС(B, k) дает базово-зависимые компоненты, связанные приближенно:

(sB)2 ≈ (∆xB)2 + (∆yB)2 + (∆zB)2 − c2(∆tB)2 (8)

Расчетный пример искажения интервала: (из [1]) Пусть x = 3.1415, t = 1.772, c = 1.
Истинное s2 ≈ 6.729. Наблюдение в B = 3, k = 2: xB ≈ 3.111, tB ≈ 1.778. Наблюдаемое
s2

B ≈ 6.517. Разница s2 − s2
B ≈ 0.212 — числовая аналогия релятивистского искажения из-за

ОСС.
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4.3 Лоренц-инвариантность и ОСС

Инвариантность s2 относится к |Ψs⟩, наблюдаемое sB зависит от контекста B.

4.4 Некоммутативность пространства и времени

Некоммутативность [ÔСС(Bx), ÔСС(Bt)] ̸= 0 может дать числовое обоснование сигнатуре
метрики.

5 Связи с существующими теориями

• p-адические числа и адели [5, 7]: ОСС обобщает идею на B и вводит некоммутатив-
ность.

• Некоммутативная геометрия [4, 9]: ОСС как феноменология [x̂µ, x̂ν ] ̸= 0.

• Теория топосов и квантовая логика [6, 10]: ОСС как модель контекстуальности
(|Ψчисл⟩ - пучок, ÔСС - слой).

• Теория информации и голография [8]: Конечность k как следствие конечной плотно-
сти информации.

6 Следствия, предсказания и открытые вопросы

6.1 Переинтерпретация КМ

ОСС как числовой источник неопределенности.

6.2 Природа фундаментальных констант

Возможная ограниченность точности и базовая зависимость.

6.3 Квантовые вычисления и информация

Новые пределы точности, “числовые кудиты”.

6.4 Математические вызовы

Разработка алгебры ÔСС и пространства N .
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6.5 Физическая реализуемость и экспериментальные сигнатуры

Как ОСС может проявляться?

• Фундаментальные пределы точности: Минимальная длина/время из-за предела
разрешения k.

• Спектральные эффекты: Тонкая структура, зависящая от арифметики уровней.

• Модификация интерференции: Аномалии, зависящие от числовых свойств парамет-
ров.

• “Числовой шум”: Фундаментальный шум из-за флуктуаций k или B.

• Контекстуальность в прецизионных измерениях: Зависимость от способа задания
параметров.

• Привилегированный базис: Особая простота законов в B0.

• Статистический анализ и структурная зависимость:Сравнение “цифровой текстуры”
для разных систем (ППТ vs кубы, см. Раздел 2) может выявить зависимость стабильности
хвоста от алгебраической структуры.

7 Гипотеза: ОСС как мост между КМ и Теорией Относи-
тельности

ОСС предлагает механизм для объединения контекстуальности КМ и ТО через идею
фундаментальной контекстуальности числового описания. Выбор ÔСС(B) аналогичен
выбору измерительного прибора (КМ) и системы отсчета (ТО).

1. Единый источник контекстуальности: Зависимость от B.

2. Квантовые свойства: Из (4) и (3).

3. Релятивистские свойства: Из зависимости xB, tB от B. Инвариантность s2 для |Ψs⟩ (7),
но не для sB (8).

4. Универсальность математики: Единый аппарат проявляетОСС-свойства наПланковском
масштабе.

ОСС предлагает путь к объединению через переосмысление роли самой математики.

8 Заключение

Мы представили и развили гипотезу Оператора Системы Счисления (ОСС). Модель ОСС
с ее ограниченной наблюдаемостью младших цифр и потенциальной некоммутативностью
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[ÔСС(B1), ÔСС(B2)] предлагает единый механизм, который может лежать в основе как кван-
товой неопределенности, так и релятивистской контекстуальности, служа концептуальным
мостом между КМ и ТО (Раздел 7). Включение числовых примеров (Разделы 2, 3, 4) иллюстри-
рует постулаты ОСС. Важным наблюдением является структурная зависимость ОСС-проекции
(контраст ППТ и кубических уравнений, Раздел 2). Обсуждение физической реализуемости
(Раздел 6.5) намечает пути экспериментальной проверки. Модель ОСС предлагает сдвиг
парадигмы к признанию активной роли математики. Дальнейшее развитие требует строгой
математической формализации и поиска экспериментальных свидетельств.
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